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Abstract: Chirality plays an essential role in the fields of biology, medicine and physics. 
However, natural materials exhibit very weak chiroptical response. In this paper, near-
infrared chiral plasmonic metasurface absorbers are demonstrated to selectively absorb either 
the left-handed or right-handed circularly polarized light for achieving large circular 
dichroism (CD) across the wavelength range from 1.3 µm to 1.8 µm. It is shown that the 
maximum chiral absorption can reach to 0.87 and that the maximum CD in absorption is 
around 0.70. The current chiral metasurface design is able to achieve strong chiroptical 
response, which also leads to high thermal CD for the local temperature increase. The high-
contrast reflective chiral images are also realized with the designed metasurface absorbers. 
The demonstrated chiral metasurface absorbers can be applied in many areas, such as optical 
filters, thermal energy harvesting, optical communication, and chiral imaging. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Chirality represents the asymmetry property of matter, which is important in many fields of 
science and engineering. Chirality has been introduced in chemistry since the 1870s [1], and 
the study of chirality advances our knowledge in understanding the mysteries of nature [2–
11]. There are usually a pair of enantiomeric forms for optical chiral materials [12], which are 
two non-superimposable mirror images with different responses to the left-handed and right-
handed circularly polarized (LCP and RCP) light. However, the high-efficiency chiral 
absorbers are not attainable from natural materials. Recently, metamaterials and metasurfaces 
known for exhibiting exotic electromagnetic properties [2–11] have been designed to achieve 
highly-efficient selective chiral absorption with various types of three-dimensional (3D) 
optical structures, such as double-layered L-shaped antennas [13], double-layered twisted 
crosses [14,15], single-layered double sectors [5], spirals [16–18], entangled structures 
[19,20], and letter-shaped structures [21,22]. Moreover, a deep-learning-based model has 
been utilized to automatically design and optimize 3D chiral metamaterials [23]. 

Here, we present one kind of highly-efficient chiral plasmonic metasurface absorbers 
working in the near-infrared wavelength region. The designed chiral metasurface absorber, 
consisting of a three-layer metal-dielectric-metal structure, can selectively absorb the LCP or 
RCP normal incident light. The results show 87% maximum chiral absorption and 70% 
maximum CD in absorption at the resonance wavelength across the wavelength range from 
1.3 µm to 1.8 µm. The high CD in absorption is due to the special design of the top-layer 
metallic patterns. The resonance wavelength with the maximum CD in absorption can be 
easily tuned by simply changing the geometric parameters of the top-layer metallic patterns. 
To elucidate the mechanism of optical chiral absorption, electric field distributions and 
temperature distributions are mapped for the LCP and RCP incidence light. In order to further 
visualize the potential applications of the chiral metasurface absorbers, the high-contrast near-
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